
Formal Techniques for Synchronized Fault-Tolerant Systems’

Ben L. Di Vito
VI’GYAN, Inc.

30 Research Drive
Hampton, VA 23666-1325 USA

Abstract

We present the formal verification of synchronizing
aspects of the Reliable Computing Platform (RCP),
a fault-tolerant computing system for digital flight
control applications. The RCP uses NMR-style re-
dundancy to mask faults and internal majority vot-
ing to purge the effects of transient faults. The sys-
tem design has been formally specified and verified
using the EHDM verification system. Our formaliza-
tion is based on an extended state machine model
incorporating snapshots of local processors’ clocks.

Key Words - Clock synchronization, correctness
proofs, faul t tolerance, formal methods, majority vot-
ing, modular redundancy, theorem proving, transient
fault recovery.

1 Introduction
NASA is engaged in a major research effort towards
the development of a practical validation and veri-
fication methodology for digital fly-by-wire control
systems. Researchers at NASA Langley Research
Center (LaRC) are exploring formal verification as
a candidate technology for the elimination of de-
sign errors in such systems. In previous reports
[Di Vito 1990, Di Vito 1992, Butler 19911, we put
forward a high level architecture for a reliable com-
puting plat form (RCP) based on fault-tolerant com-
puting principles. Central to this work is the use of
formal methods for the verification of a fault-tolerant
operating system that schedules and executes the
application tasks of a digital flight control system.
Phase 1 of this effort established results about the
high level design of RCP. This paper discusses our
Phase 2 results, which carry the design, specification,
and verification of RCP to lower levels of abstraction.
Complete details of the Phase 2 work are available
in technical report form [Butler 19921.

‘Third IFIF’ International Working Conference on Depend-
able Computing for Criticd Applications. Mondello, Sicily,
Italy. September 14-16,1992.

Ricky W. Butler
NASA Langley Research Center
Hampton, VA 23665-5225 USA

The major goal of this work is to produce a ver-
ified real-time computing platform, both hardware
and operating system software, useful for a wide vari-
ety of control-system applications. Toward this goal,
the operating system provides a user interface that
“hides” the implementation details of the system
such as the redundant processors, voting, clock syn-
chronization, etc. We adopt a very abstract model
of real-time computation, introduce three levels of
decomposition of the model towards a physical real-
ization, and rigorously prove that the decomposition
correctly implements the model. Specifications and
proofs have been mechanized using the EHDM verifi-
cation system [von Henke 19881.

A major objective of the RCP design is to enable
the system to recover from the effects of transient
faults. More than their analog predecessors, digital
flight control systems are vulnerable to external phe-
nomena that can temporarily affect the system with-
out permanently damaging the physical hardware.
External phenomena such as electromagnetic inter-
ference (EMI) can flip the bits in a processor’s mem-
ory or temporarily affect an ALU. EM1 can come
from many sources such as cosmic radiation, light-
ning or High Intensity Radiated Fields (HIRF).

RCP is designed to automatically purge the effects
of transients periodically, provided the transient is
not massive, that is, simultaneously affecting a ma-
jority of the redundant processors in the system. Of
course, there is no hope of recovery if the system
designed to overcome transient faults contains a de-
sign flaw. Consequently, emphasis has been placed
on techniques that mathematically show when the
desired recovery properties are obtained.

1.1 Design of RCP
We propose a well-defined operating system that pro-
vides the applications software developer a reliable
mechanism for dispatching periodic tasks on a fault-
tolerant computing base that appears to him as a sin-
gle ultra-reliable processor. A four-level hierarchical
decomposition of the reliable computing platform is
shown in figure 1.

85

~

processor System Model (US) I
I

I
Fault-tolerant Replicated Synchronous Model (RS)

Fault-tolerant Distributed Synchronous Model (DS)
I Inter processor

Com m u nication Link
Processor
Replicate ...

1
Interprocessor

Communication Link

I

I Fault-tolerant Distributed Asynchronous Model (DA) I
Processor
Replicate

R Hardware/Software Implementation I
Figure 1: Hierarchical specification of RCP.

The top level of the hierarchy describes the oper-
ating system as a function that sequentially invokes
application tasks. This view of the operating system
will be referred to as the uniprocessor model, which
forms the top-level requirement for the RCP.

Fault tolerance is achieved by voting the results
computed by the replicated processors operating on
identical inputs. Interactive consistency checks on
sensor inputs and voting of actuator outputs requires
synchronization of the replicated processors. The
second level in the hierarchy describes the operating
system as a synchronous system where each repli-
cated processor executes the same application tasks.
The existence of a global time base, an interactive
consistency mechanism and a reliable voting mecha-
nism are assumed at this level.

Although not anticipated during the Phase 1 ef-
fort, another layer of refinement was inserted before
the introduction of asynchrony. Level 3 of the hi-
erarchy breaks a frame into four sequential phases.
This allows a more explicit modeling of interproces-
sor communication and the time phasing of compu-
tation, communication, and voting. The use of this
intermediate model avoids introducing these issues
along with those of real time, thus preventing an
overload of details in the proof process.

At the fourth level, the assumptions of the syn-
chronous model must be discharged. Rushby and von
Henke [Rushby 19891 report on the formal verifica-
tion of Lamport and Melliar-Smith’s [Lamport 19851
inter active-convergence clock synchronization algo-
rithm. This algorithm can serve as a foundation for
the implementation of the replicated system as a col-
lection of asynchronously operating processors. Ded-
icated hardware implementations of the clock syn-
chronization function are a long-term goal.

Figure 2 depicts the generic hardware architec-
ture assumed for implementing the replicated sys-

I Sensors I

Figure 2: Generic hardware architecture.

tem. Single-source sensor inputs are distributed
by special purpose hardware executing a Byzantine
agreement algorithm. Replicated actuator outputs
are all delivered in parallel to the actuators, where
force-sum voting occurs. Interprocessor communica-
tion links allow replicated processors to exchange and
vote on the results of task computations. As previ-
ously suggested, clock synchronization hardware will
be added to the architecture as well.

1.2 Previous Efforts
Many techniques for implementing fault-tolerance
through redundancy have been developed over
the past decade, e.g. SIFT [Goldberg 19841,
FTMP [Hopkins 19781, FTP [Lala 19861, MAFT
[Walter 19851, and MARS [Kopetz 19891. An often
overlooked but significant factor in the development
process is the approach to system verification. In
SIFT and MAFT, serious consideration was given to
the need to mathematically reason about the system.
In FTMP and FTP, the verification concept was al-
most exclusively testing.

Among previous efforts, only the SIFT project
attempted to use formal methods [Moser 19871.
Although the SIFT operating system was never
completely verified [NASA 19831, the concept
of Byzantine Generals algorithms was developed
[Lamport 19821 as was the first fault-tolerant clock
synchronization algorithm with a mathematical per-
formance proof [Lamport 19851. Other theoretical
investigations have also addressed the problems of

86

replicated systems [Mancini 19881.
Some recent work has focused on problems

related to the style of fault-tolerant computing
adopted by RCP. Rushby has studied a fault
masking and transient recovery model and created
a formalization of it using EHDM [Rushby 1991,
Rushby 19921. Rushby’s model is more general
than ours, but assumes a tighter degree of synchro-
nization where voting takes place after every task
execution. In addition, Shankar has undertaken
the formalization of a general scheme for model-
ing fault-tolerant clock synchronization algorithms
[Shankar 1991, Shankar 19921. Several efforts in
hardware verification are likewise relevant. Bevier
and Young have verified a circuit design for perform-
ing interactive consistency [Bevier 19911, while Sri-
vas and Bickford have carried out a similar activity
[Srivas 19911. Schubert and Levitt have verified the
design of processor support circuitry, namely a mem-
ory management unit [Schubert 19911.

2 Modeling Approach
The specification of the Reliable Computing Plat-
form (RCP) is based on state machine concepts. A
system state models the memory contents of all pro-
cessors as well as auxilia y variables such as the fault
status of each processor. This latter type of infor-
mation may not be observable by a running system,
but provides a way to express precise specifications.
System behavior is described by specifying an initial
state and the allowable transitions from one state
to another. A transition specification must deter-
mine (or constrain) the allowable destination states
in terms of the current state and current inputs. The
intended interpretation is that each component of the
state models the local state of one processor and its
associated hardware.

RCP specifications are given in relational form.
This enables one to leave unspecified the behavior
of a faulty component. Consider the example below.

Rt,,, : function[State, State + bool] =
(X s, t : nonfaulty(s(i)) 3 t (i) = f (s (i)))

In the relation Rtpon, if component i of state s is
nonfaulty, then component i of the next state t is
constrained to equal f (s (i)) . For other values of i,
that is, when s (i) is faulty, the next state value t(i) is
unspecified. Any behavior of the faulty component
is acceptable in the specification defined by Rtran.

It is important to note that the modeling of com-
ponent hardware faults is for specification purposes
only and reflects no self-cognizance on the part of
the running system. We assume a nonreconfigurable

architecture that is capable of masking the effects of
faults, but makes no attempt to detect or diagnose
those faults. Transient fault recovery is the result of
an automatic, continuous voting process; no explicit
invocation is involved.

2.1 RCP State Machines
The RCP specification consists of four separate mod-
els of the system: Uniprocessor System (US), Repli-
cated Synchronous (RS), Distributed Synchronous
(DS), Distributed Asynchronous (DA). Each of these
specifications is in some sense complete; however,
they are written at different levels of abstraction and
describe the behavior of the system with different de-
grees of detail.

1. Uniprocessor System layer (US). This con-
stitutes the top-level specification of the func-
tional system behavior defined in terms of an
idealized, fault-free computation mechanism.
This specification is the correctness criterion to
be met by all lower level designs.

2. Replicated Synchronous layer (RS). Proces-
sors are replicated and the state machine makes
global transitions as if all processors were per-
fectly synchronized. Interprocessor communica-
tion is implicit at this layer. Fault tolerance is
achieved using exact-match voting on the results
computed by the replicated processors operating
on identical inputs.

3. Distributed Synchronous layer (DS). Next,
the interprocessor communication mechanism is
modeled and transitions for the RS layer ma-
chine are broken into a series of subtransitions.
Activity on the separate processors is still as-
sumed to occur synchronously. Interprocessor
communication is accomplished using a simple
mailbox scheme.

4. Distributed Asynchronous layer (DA). Fi-
nally, the lowest layer relaxes the assumption of
synchrony and allows each processor to run on
its own independent clock. Clock time and real
time are introduced into the modeling formal-
ism. The DA machine requires an underlying
clock synchronization mechanism.

Most of this paper will concentrate on the DA layer
specification and its proof.

The basic design strategy is to use a fault-tolerant
clock synchronization algorithm as the foundation
for the operating system, providing a global time
base for the system. Although the synchronization is

87

not perfect, it is possible to develop a reliable com-
munications scheme where the system clock skew is
strictly bounded. For all working clocks p and Q , the
synchronization algorithm provides a bounded clock
skew 6 between p and Q, assuming that the number
of faulty clocks, say m, does not exceed (nrep-1)/3,
where nrep is the number of replicated processors.
This property enables a simple communications pro-
tocol to be established whereby the receiver waits
until rnaxb + 6 after a pre-determined broadcast
time before reading a message (maxb is the maxi-
mum communication delay).

Each processor in the system executes the same
set of application tasks during every cycle of a con-
tinuously repeating task schedule. A schedule com-
prises a fixed number of frames, each frame-time
units of time long. A frame is further decomposed
into four phases: compute, broadcast, vote and sync.
During the compute phase, all of the applications
tasks scheduled for this frame are executed.2 The
results of all tasks that are to be voted this frame
are then loaded into the outgoing mailbox, initiating
a broadcast send operation. During the next phase,
the broadcast phase, the system merely waits a suffi-
cient amount of time (maxb + 6) to allow all of the
messages to be delivered. During the vote phase,
each processor retrieves all of the replicated data
from each processor and performs a voting operation.
Typically, majority voting is used for each of the se-
lected state elements. The processor then replaces
its local memory with the voted values. Finally, the
clock synchronization algorithm is executed during
the sync phase. Although conceptually this can be
performed in either software or hardware, we intend
to use a hardware implementation.

2.2 Extended State Machine Model

Formalizing the behavior of the Distributed Asyn-
chronous layer requires a means of incorporating
time. We accomplish this by formulating an ex-
tended state machine model that includes a notion
of local clock time for each processor. It also recog-
nizes several types of transitions or operations that
can be invoked by each processor. The type of oper-
ation dictates which special constraints are imposed
on state transitions for certain components.

The time-extended state machine model allows for
autonomous local clocks on each processor to be
modeled using snapshots of clock time coinciding
with state transitions. Clock values within a state

2Multi-rate scheduling is accomplishedin RCP by having a
task execute every n frames, where n may be chosen differently
for each task.

represent the time at which the last transition oc-
curred (time current state was entered). If a state
was entered by processor p at time T and is occu-
pied for a duration D, the next transition occurs for
p at time T + D and this clock value is recorded for
p in the next state. A function cp(T) is assumed
to map local clock values for processor p into real
time. Notationally, s(i).lclock refers to the (logical)
clock-time snapshot of processor i’s clock in state s.

Clocks may become skewed in real time. Conse-
quently, the occurrence of corresponding events on
different processors may be skewed in real time. A
state transition for the DA state machine corresponds
to an aggregate transition in which each processor
experiences the same event, such as completing one
phase of a frame and beginning the next. Each
processor may experience the event at different real
times and even different clock times if duration val-
ues are not identical.

Four classes of operations axe distinguished:

1. L: Purely local processing that involves no
broadcast communication or mailbox access.

2. B: Broadcast communication where a send is
initiated when the state is entered and must be
completed before the next transition.

3. R Local processing that involves no send op-
erations, but does include reading of mailbox
values.

4. C: Clock synchronization operations that may
cause the local clock to be adjusted and appear
to be discontinuous.

We make the simplifying assumption that the du-
ration spent in each state, except those of type C,
is nominally a fixed amount of clock time. Al-
lowances need to be made, however, for small vari-
ations in the actual clock time used by real proces-
sors. Thus if v is the maximum rate of variation and
DI, DA are the intended and actual durations, then
IDA - DII 5 VDI must hold.

2.3 The Proof Method
The proof method is a variation of the classical al-

gebraic technique of showing that a homomorphism
exists. Such a proof can be visualized as showing
that a diagram “commutes” (figure 3). Consider
two adjacent levels of abstraction, called the top and
bottom levels for convenience. At the top level we
have a current state, s‘, a destination state, t’, and
a transition that relates the two. The properties of
the transition are given as a mathematical relation,

88

Figure 3: States, transitions, and mappings.

NtOp(s', t'). Similarly, the bottom level consists of
states, s and t , and a transition that relates the two,
Nbottom(s,t) . The state values at the bottom level
are related to the state values at the top level by
way of a mapping function, map. To establish that
the bottom level implements the top level one must
show that the diagram commutes (in a sense meant
for relations instead of functions):

Nbottom(S, t) 3 Ntop(map(s), madt))

where map(s) = s' and map(-&) = t' in the diagram.
One must also show that initial states map up:

Zbottom(S) 3 &op(map(s))

An additional consideration in constructing such
proofs is that only states reachable from an initial
state are relevant. Thus, it suffices to prove a con-
ditional form of commutativity that assumes transi-
tions always begin from reachable states. A weaker
form of the theorem is then called for:

R (s) A N b o t t o r n (S , t) 3 Ntop(map(s), map(t))

where R is a reachability predicate. This form en-
ables proofs that proceed by first establishing state
invariants. Each invariant is shown to hold for all
reachable states using a specialized induction schema
and then invoked as a lemma in the main proof.

By carrying out such proofs for each adjacent pair
of specification layers in figure 1, we construct a tran-
sitive argument that the lowest layer correctly im-
plements the top-most layer. This is equivalent to a
direct proof from bottom to top using the functional
composition of all the mappings. Such a large proof
is difficult to accomplish in practice; hence the use
of a layered approach.

2.4 EHDM Language and Verification
System

Design verification in RCP has been carried out
using EHDM. The EHDM verification system

[von Henke 19881 is a mature tool, which has been
under development by SRI International since 1983
and followed their earlier work on HDM. It comprises
a highly integrated environment for formal system
development. The specification language is based on
a higher-order logic with features supporting module
structure and parameterization. An operational sub-
set of the language can be automatically translated
to Ada.

EHDM contains an automated theorem prover to
support proving in the higher-order logic. Decision
procedures for several arithmetic domains are em-
bedded in the system. Users invoke the prover by
writing a proof directive in the specification lan-
guage, stating explicit premises and any necessary
substitutions.

3 Clock Time and Real Time
In this section we discuss the synchronization theory
upon which the DA specification depends. Although
the RCP architecture does not depend on any partic-
ular clock synchronization algorithm, we have used
the specification for the interactive consistency algo-
rithm (ICA) [Lamport 19851 since EHDM specifica-
tions for ICA already exist [Rushby 19891.

The formal definition of a clock is fundamental. A
clock can be modeled as a function from real time t
to clock time T: C(t) = T or as a function from clock
time to real time: c(T) = t.3 Since the ICA theory
was expressed in terms of the latter, we will also be
modeling clocks as functions from clock time to real
time. We must be careful to distinguish between an
uncorrected clock and a clock being resynchronized
periodically. We use the notation c(T) for an uncor-
rected clock and di)(T) to represent a synchronized
clock during its ith frame."

3.1 Fault Model for Clocks
In addition to requirements conditioned on having a
nonfaulty processor, the DA specifications are con-
cerned with having a nonfaulty clock as well. It is
assumed that the clock is an independent piece of
hardware whose faults can be isolated from those
of the corresponding processor. Although some im-
plementations of a fault-tolerant architecture such
as RCP could execute part of the clock synchro-
nization function in software, thereby making clock

~

We will use the now standard convention of representing
clock time with capital letters and real time with lower case
letters.

4This differs from the notation, d i) (T) , used in
[Rushby 19891.

89

faults and processor faults mutually dependent, we
assume that RCP implementations will have a dedi-
cated hardware clock synchronization function. This
means that a clock can continue to function prop-
erly during a transient fault period on its adjoining
processor. The converse is not true, however. Since
the software executing on a processor depends on
the clock to properly schedule events, a nonfaulty
processor having a faulty clock may produce errors.
Therefore, a one-way fault dependency exists.

Good clocks have different drift rates with respect
to perfect time. Nevertheless, this drift rate can be
bounded. Thus, we define a good clock as one whose
drift rate is strictly bounded by pl2 . A clock is
“good”, Le., a predicate goodAock(T0, Tn) is true,
between clock times TO and T, iff:

VTI,TZ : TO 5 TI 5 Tn AT0 5 TZ 5 Tn
3 Icp(T1) - cp(Z) - (TI - T z) ~

2 5 * IT1 -Tzl

The synchronization algorithm is executed once
every frame of duration frame-time. The notation
T(i) is used to represent the start of the ith frame
at time To + i * frame-time. The notation T E Idi)
means that T falls in the ith frame, that is,

3 II : 0 5 II 5 frame-time AT = T(’) + II
During the ith frame the synchronized clock on pro-
cessor p , r tp , is defined by rt,(i,T) = cp(T+Corrf)),
where Corr is the cumulative sum of the corrections
that have been made to the (logical) clock.

Note that in order for a clock to be nonfaulty in
the current frame it is necessary that it has been
working continuously from time zero5:

goodclock(p, T (O) + Corrr) , flit’) + Cor$))

From these definitions we state the condition of hav-
ing enough good clocks to maintain synchronization:

enough-clocks: function[period boot] =
(X a : 3*num-good-clocks(i,nrep) > 2*nrep)

3.2 Clock Synchronization
Clock synchronization theory provides two impor-
tant properties about the clock synchronization al-
gorithm, namely that the skew between good clocks
is bounded and that the correction to a good clock
is always bounded. The maximum skew is denoted
by S and the maximum correction is denoted by E.
More formally, for all nonfaulty clocks p and q , two
conditions obtain:

5This is a limitation not of RCP, but of existing, mechani-
cally verified fault-tolerant clock synchronization theory. fi-
ture work will concentrate on how to make clock synchroniza-
tion robust in the presence of transient faults.

S1: VT E R(’) : Irtt)(T) - rt$)(T)(< 6

~ 2 : ICor$+’) - Cor$)! < c

The value of S is determined by several key param-
eters of the synchronization system: p, E , SO, m, nrep.
The parameter e is a bound on the error in reading
another processor’s clock. So is an upper bound on
the initial clock skew and rn is the maximum number
of faulty clocks.

The main synchronization theorem is:

sync-thm: Theorem enough-clocks(i) 3
(v p, Q : (VT : T E R(’) A

nonfaulty-clock(p, i) A nonfaulty-clock(q, i)
3 Irt$)(T) - rty)(T)I 5 6))

The proof that DA implements DS depends crucially
upon this theorem.

3.3 Implementation Restrictions
Recall that the DA extended state machine model
recognized four different classes of state transition:
L, B, R, C. Although each is used for a different phase
of the frame, the transition types were introduced
because operation restrictions must be imposed on
implementations to correctly realize the DA specifi-
cations. Failure to satisfy these restrictions can ren-
der an implementation at odds with the underlying
execution model, where shared data objects are sub-
ject to the problems of concurrency. The set of con-
straints on the DA model’s implementation concerns
possible concurrent accesses to the mailboxes.

While a broadcast send operation is in progress,
the receivers’ mailbox values are undefined. If the
operation is allowed sufficient time to complete, the
mailbox values will match the original values sent. If
insufficient time is allowed, or a broadcast operation
is begun immediately following the current one, the
final mailbox value cannot be assured. Furthermore,
we make the additional restriction that all other uses
of the mailbox be limited to read-only accesses. This
provides a simple sufficient condition for noninter-
fering use of the mailboxes, thereby avoiding more
complex mutual exclusion restrictions.

Operation Restrictions. Let s and t
be successive DA states, i be the processor
with the earliest value of ci(s(i).lclock), and
j be the processor with the latest value of
cj(t(j).Iclock). If s corresponds to a broad-
cast (B) operation, all processors must have
completed the previous operation of type R
by time ci(s(i).lclock), and the next opera-
tion of type B can begin no earlier than time
cj(t(j).lclock). No processor may write to

90

its mailbox during an operation of type B
or R.

By introducing a prescribed discipline on the use
of mailboxes, we ensure that the axiom describing
broadcast communication can be legitimately used
in the DA proof. Although the restrictions are ex-
pressed in terms of real time inequalities over all
processors’ clocks, it is possible to derive sufficient
conditions that satisfy the restrictions and can be
established from local processor specifications only,
assuming a clock synchronization mechanism is in
place.

4 Design Specifications
The RCP specifications are expressed in terms of
some common types and constants, declared in
EHDM as follows:

Pstate: Type (* computation s t a t e *)
inputs: Type (* sensor i n p u t s *)
outputs: Type (* a c t u a t o r outputs *)
nrep: nat (* number of processors *)

Mailboxes and their unit of information exchange
are provided with types:

MB : Type
MBvec: Type = array [processors] of M B

This scheme provides one slot in the mailbox array
for each replicated processor.

In the following, we present a sketch of the spec-
ifications for the US and DA layers. To keep the
presentation brief, we omit the RS and DS specifica-
tions. Details can be found in [Butler 19921.

(* mailbox e n t r y *)

4.1 US Specification
The US specification is very simple:

Nus: function[Pstate, Pstate, inputs -+ bool] =
(x s, t , u : t = fc(u, s))

The function Nu, defines the transition relation be-
tween the current state and the next state. We re-
quire that the computation performed by the unipro-
cessor system be deterministic and can be mod-
eled by a function fc : inputs x Pstate --+ Pstate.
To fit the relational, nondeterministic state machine
model we simply equate Nus(s, t , ti) to the predicate

External system outputs are selected from the val-
ues computed by fc. The function fa : Pstate -+
outputs denotes the selection of state variable values

t = fC(% s).

to be sent to the actuators. The type outputs repre-
sents a composite of actuator output types.

While there is no explicit mention of time in the
US model, it is intended that a transition correspond
to one frame of the execution schedule.

The constant initial-proc-state represents the initial
Pstate value when computation begins.

init iahs: function[Pstate --$ bool] =
(A s : s = initialproc-state)

Although the initial state value is unique, initial-us is
expressed in predicate form for consistency with the
overall relational method of specification.

4.2 DA Specification
The DA specification permits each processor to run
asynchronously. Every processor in the system has
its own clock and task executions on one processor
take place at different times than on other processors.
Nevertheless, the model at this level explicitly takes
advantage of the fact that the clocks of the system
are synchronized to within a bounded skew 6.

da-proc-state: Type =
Record healthy : nat,

proc-state : Pstate,
mailbox : MBvec,
lclock : logical-clocktime,
cum-delta : number

end record

da-procarray: Type =
array [processors] of da-proc-state

DAstate: Type =
Record phase : phases,

sync-period : nat,
proc : da-proc-array

end record

The phase field of a DAstate indicates whether the
current phase of the state machine is compute, broad-
cast, vote, or sync. The sync-period field holds the
current (unbounded) frame number.

The state for a single processor is given by a record
named da-proc-state. The first field of the record is
healthy, which is 0 when a processor is faulty. Oth-
erwise, it indicates the (unbounded) number of state
transitions since the last transient fault. A perma-
nently faulty processor would have zero in this field
for all subsequent frames. A processor that is recov-
ering from a transient fault is indicated by a value
of healthy less than the constant recovery-period. A
processor is said to be working whenever healthy 2
recovery-period. The proc-state field of the record is

91

real time

t

Figure 4: Relationship between cp and dart.

the computation state of the processor. The mail-
box field of the record denotes the incoming mailbox
mechanism on each processor.

The lclock field of a DAstate stores the current
value of the processor's local clock. The real-
time corresponding to this clock time can be found
through use of the auxiliary function da-rt.

da-rt: function[DAstate, processors,
logical-clocktime + realtime] =

(A da, p , T : cp(T + da.proc(p).cum-delta))

This function corresponds to the rt function of the
clock synchronization theory. Thus, da-rt(s, p , 7")
yields the real time corresponding to processor p's
synchronized clock. Given a clock time T in the cur-
rent frame (ssync-period), da-rt returns the real-time
at which processor p's clock reads T. The current
value of the cumulative correction is stored in the
field cum-delta.

Every frame the clock synchronization algorithm
is executed, and an adjustment given by the Corr
function of the clock synchronization theory is added
to cum-delta. Figure 4 illustrates the relationship
among cp , da-rt, and cum-delta.

The specification of time-critical behavior in the
DA model is accomplished using the da-rt function.
For example, the broadcast-received function is ex-
pressed in terms of da-rt:

broadcast-received:
function[DAstate, DAstate, processors -i bool] =

(A s , t , q : (V p :
(s.proc(p).healthy > 0
A da-rt(s, p , s.proc(p).lclock)

f maxxomm-delay
5 da-rt(t, q, t.proc(q).lclock))

3 t.proc(q).mailbox(p) =
s.proc(p).mailbox(p)))

Nd,: function[DAstate, DAstate,
inputs + bool] =

(A s, t, u : enough-hardware(t)
A t.phase = next-phase(s.phase)
A (V a : if s.phase = sync

then Nia(s, t , i)
else t.proc(i).healthy =

s. proc(i). healt hy
A t.proc(i).cum-delta =

s.proc(i).cum-delta
A tsync-period = ssync-period
A (nonfaulty-clock(i,

ssync-period) 3
clock-advanced(s.proc(i).Iclock,

t.proc(i) .Iclock,
duration(s.phase))

A (s.phase = compute 3

A (s.phase = broadcast 3

A (s.phase = vote 3

N&(s, t, 4)
Nja(s> t, i))

N$a (3 t , i)))
end if))

Figure 5: DA transition relation.

Thus, the data in the incoming bin p on proces-
sor q is defined to be equal to the value broad-
cast by p , s.proc(p).mailbox(p), only when the real
time on the receiving end, da-rt(t, q, t.proc(q).lclock),
is greater than the real time at which the
send was initiated, da-rt(s,p, s.proc(p).lclock), plus
max-comm-delay. This specification anticipates the
design of a communications system that can deliver
a message within maxxomm-delay units of time.

In the DA level there is no single transition that
covers the entire frame. There is only a phase-based
state transition relation, N d a , shown in figure 5.
Note that the transition to a new state is only valid
when enough-hardware holds in the next state:

enough-hardware:
function[DAstate -+ bool] =

(A t : maj-working(t) A
enough-clocks(t.sy nc-period))

The transition relation Nda is defined in terms of four
subrelations (not shown): Nia, Nja, and Nja,
each of which applies to a particular phase type.

As defined by the compute phase relation N:a,
the proc-state field is updated with the results of
task computation, fc(u, s.proc(i).proc-.state), and the
mailbox is loaded with the subset of these results to
be broadcast. Note that each nonfaulty replicated
processor is required to behave deterministically with
respect to task computation; in particular, fc is the
same computation function as specified in the US

92

layer. Moreover, the local clock time is changed in
the new state. This is accomplished by the predicate
clock-advanced, which is not based on a simple in-
crementation operation because the number of clock
cycles consumed by an instruction stream will ex-
hibit a small amount of variation on real processors.
The function clock-advanced accounts for this vari-
ability, meaning the start of the next phase is not
wholly determined by the start time of the current
phase.

clock-advanced :
function[logicalrlocktime, logical-clocktime,

number + bool] =
(A X , Y, D : X + D * (1 - V) 5 Y A

Y I X + D * (1 + v))
v represents the maximum rate at which one pro-
cessor’s execution time over a phase can vary from
the nominal amount given by the duration function.
v is intended to be a nonnegative fractional value,
0 5 v < 1. The nominal amount of time spent in
each phase is specified by a function named duration:

duration: function[phases -+ logical-clocktime]

The predicate initial-da puts forth the conditions
for a valid initial state. The initial phase is set to
compute and the initial sync period is set to zero.
Each element of the DA state array has its healthy
field equal to recovery-period and its proc-state field
equal to initial-proc-state.

initialzla: function[DAstate + bool] =
(A s : s.phase = compute A
ssync-period = 0 A
(V i : s.proc(i).healthy = recovery-period A

s.proc(i).procstate = initialproc-state A
s.proc(i).cum-delta = 0 A
s.proc(a).lclock = 0 A
nonfa u Ity-clock(i, 0)))

By initializing the healthy fields to the constant
recovery-period we are starting the system with all
processors working. Note that the mailbox fields are
not initialized; any mailbox values can appear in a
valid initial DAstate.

5 Summary of System Proof
Figure 6 shows the complete state machine hierar-
chy and the relationships of transitions within the
aggregate model. By performing three layer-to-layer
state machine implementation proofs, the states of
DA, the lowest layer, are shown to correctly map to
those of US, the highest layer. This means that any
implementation satisfying the DA specification will

us

RS

DS

DA

Compute Broadcast Vote Sync

Figure 6: RCP state machine and proof hier-
archy.

likewise satisfy US under our chosen interpretation,
which is given by a functional composition:

D A m a p o DSmap o RSmap

5.1 Overall Hierarchy
The two theorems required to establish that RS im-
plements US are the following.

RS-frame-commutes: Theorem

Nk(RSmap(s), RSmap(t), u)
reachable(s) A N r a (s , t , U) 2

RS-initialmaps: Theorem
initial_rs(s) 3 initialis(RSmap(s))

The theorem RS-frame-commutes shows that a suc-
cessive pair of reachable RS states can be mapped by
RSmap into a successive pair of US states (upper tier
of figure 6 commutes). The theorem RS-initial-maps
shows that an initial RS state can be mapped into
an initial US state.

To establish that DS implements RS, the following
formulas must be proved.

DS-fra me-com m utes: Theorem

NrS(DSmap(s), DSmap(t), u)
s.phase = compute A frame-N-ds(s,t, u) 3

DS-i niti a I m a ps: Theorem
initialds(s) 3 initial-rs(DSmap(s))

Note that DS transitions have finer granularity than
RS transitions: one per phase (four per frame).
Therefore, to follow the proof paradigm, we must
consider only DS states found at the beginning of

93

each frame, namely those whose phase is compute.
frame-N-ds is a predicate that composes four sequen-
tial phase transitions using NdS.

Using this device, we can show that the second tier
of figure 6 commutes.

Finally, to establish that DA implements DS, the
following formulas must be proved:

phase-corn m Utes: Theorem
reachable(s) A nlha(8, t , u) I)

Nds(DAmap(s), DAmap(t), u)

DA-initialmaps: Theorem
initia Ida(s) I) i nitialds(DAma p(s))

Since DA and DS transitions are both one per phase,
the proof is completed by showing that each of the
four lower cells of figure 6 commutes.

5.2 DA Layer Proof
We provide a brief sketch of the key parts of the DA
to DS proof. First, note that the two specifications
are very similar in structure. The primary differ-
ence is that the DS specification lacks all features
related to clock time and real time. A DSstate struc-
ture is similar to a DAstate, lacking only the Iclock,
cum-delta, and sync-period fields. Thus, in the DA
to DS mapping function, these fields are not mapped
(i.e., are abstracted away) and all of the other fields
are mapped identically.

Additionally, the DS transition relation is very
similar to N d a :

N d s : function[DSstate, DSstate,
inputs -* bool] =

(X s, t , u : maj-working(t)
A t.phase = next-phase(s.phase)
A (V Z :

if s.phase = sync
then NiS(s, t , a)
else t . proc(i). healthy =

s. proc(2) . healthy
A (s.phase =compute 3

A (s.phase = broadcast I)

A (s.phase = vote I)

J V a s , 4 u, 4)
JG&, t, i))

J G " S 3 , t , 9)
end if))

The phase-commutes theorem must be shown to
hold for all four phases. Thus, the proof is decom-
posed into four separate cases, each of which is han-
dled by a lemma of the form:

phase-corn-X: Lemma
s.phase = X ANda(S,t , U) 3

H d s (DAma p(s), DAma p(t) , u)

where X is any one of {compute, broadcast,
vote, sync}. The proof of this theorem requires
the expansion of the n/da relation and show-
ing that the resulting formula logically implies
N d s (DAm a p(s) , DAm a p(t), u) .

The proof of each lemma phase-comX is facili-
tated by using a common, general scheme for each
phase that further decomposes the proof by means
of four subordinate lemmas. The general form of
these lemmas is as follows:

Lemma 1: s.phase = x ANda(s, t , u) I)
(V i : N,",(s, t , a))

Lemma 2: $.phase= XAN," , (s , t , i) I)
Nz(DAmap(s) ,DAmap(t) , i)

Lemma 3: ss.phase = X A
DS. maj-worki ng(tt) A
(vi:N:(ss,tt,a)) 3

n/ds(Ss, t t , u)

Lemma 4: s.phase = X A&,(s, t , u) 3
DS.maj-working(DAmap(t))

A few differences exist among the lemmas for the four
phases, but they adhere to this scheme fairly closely.
The phase-comX lemma follows by chaining the four
lemmas together:

Nda(9, t , u) 2 (v : nr,",(s, t , i)) 2
(Vi:n/,?;(DAmap(s),DAmap(t),i)) I)
N d s (DAmaP(s), DAmap(t), u)

In three of the four cases above, proofs for the lem-
mas are elementary. The proof of Lemma 1 follows
directly from the definition of N d a . Lemma 3 follows
directly from the definition of N d a . Lemma 4 follows
from the definition O f Nda , enough-hardware, and the
basic mapping lemmas.

Furthermore, for three of the four phases, the proof
of Lemma 2 is straightforward. For all but the broad-
cast phase, Lemma 2 follows from the definition of
Ng , NdK,, and the basic mapping lemmas.

However, in the broadcast phase, Lemma 2 from the
scheme above, which is named corn-broadcast-2, is a
much deeper theorem. The broadcast phase is where
the effects of asynchrony are felt: we must show that
interprocessor communications are properly received

94

in the presence of asynchronously operating proces-
sors. Without clock synchronization we would be un-
able to assert that broadcast data is received. Hence
the need to invoke clock synchronization theory and
its attendant reasoning over inequalities of time.

The lemma com-broadcast-2 deals with the main
difference between the DA level and the DS level-the
timing constraint in the function broadcast-received.
The timing constraint

da-rt(s, p , s.proc(p).Iclock) + maxcomm-delay 5
da-rt(t, q, t.proc(q).lclock)

must be satisfied to show that the DS level analog
of broadcast-received holds. A key lemma relating
real times on two processors is instrumental for this
purpose :

ELT: Lemma
Tz 2 Ti + bb A (Ti 2 TO)
A (bb 2 To) A Tz E R(’P) A Ti E R(’P)
A nonfaultyrlock(p, sp)
A nonfaulty-clock(q, sp)
A enough-clocks(sp)

3 TtgP’(Tz) 2
TtFP’(T1) + (1 - $) * lbbl - S

This lemma establishes an important property of
timed events in the presence of a fault-tolerant clock
synchronization algorithm. Suppose that on proces-
sor q an event occurs at T1 according to its own clock
and another event occurs on processor p at time T2
according to its own clock. Then, assuming that the
clock times fall within the current frame and enough
clocks are nonfaulty, then the following is true about
the real times of the events:

where bb = T2 - T I , TI = s.proc(p).lclock, and T2 =
t .proc(q) .Iclock.

If we apply this lemma to the broadcast phase, let-
ting T1 be the time that the sender loads his outgo-
ing mailbox bin and T2 be the earliest time that the
receivers can read their mailboxes (Le., at the start of
the vote phase), we know that these events are sepa-
rated in time by more than (l-$)*lbbl-S. By choos-
ing the value bb = duration(br0adcast) in such a way
that this real time quantity exceeds maxcomm-delay,
accounting for v variation as well, we can prove that
all broadcast messages are properly received,

5.3 Proof Mechanization
All proofs sketched above as well as the other RCP
proofs have been carried out with the assistance of
EHDM [Butler 19921. Although the first phase of this

work was accomplished without the use of an auto-
mated theorem prover [Di Vito 19901, we found the
use of EHDM beneficial to this second phase of work
for several reasons.

e

e

e

e

e

6
We
ing

Increasingly detailed specifications emerge in
the lower level models.

The strictness of the EHDM language forced us
to elaborate the design more carefully.

Most proofs are not very deep but contain sub-
stantial detail. Without a mechanical proof
checker, it would be far too easy to overlook a
flaw in the proofs.

The proof support environment of EHDM assures
us that our proof chains are complete and we
have not overlooked some unproved lemmas.

The decision procedures for linear arithmetic
and propositional calculus relieved us of the
need to reduce many formulas to primitive
axioms of arithmetic. Especially useful was
EHDM’S reasoning ability for inequalities.

Conclusion
have described a formalization of the synchroniz-
aspects of a reliable computing platform (RCP).

The top level specification is extremely general and
should serve as a model for many fault-tolerant sys-
tem designs. The successive refinements in the lower
levels of abstraction introduce, first, processor repli-
cation and voting, second, interprocess communica-
tion by use of dedicated mailboxes, and finally, the
asynchrony due to separate clocks in the system.

Key features of the overall RCP work completed
during Phase 2 and improvements over the results of
Phase 1 include the following.

e Specification of redundancy management and
transient fault recovery are based on a very
general model of fault-tolerant computing sim-
ilar to one proposed by Rushby [Rushby 1991,
Rushby 19921, but using a frame-based rather
than task-based granularity of synchronization.

e Specification of the asynchronous layer design
uses modeling techniques based on a time-
extended state machine approach. This method
allows us to build on previous work that for-
malized clock synchronization mechanisms and
their proper ties.

Formulation of the RCP specifications is based
on a straightforward fault model, providing a

95

clean interface to the realm of probabilistic reli-
ability models. It is only necessary to determine
the probability of having a majority of work-
ing processors and a two-thirds majority of non-
faulty clocks.

A four-layer tier of specifications has been com-
pletely proved to the standards of rigor of the
EHDM mechanical proof system. The full set of
proofs can be run on a Sun SPARCstation in
less than one hour.

Important constraints on lower level design and
implementation constructs have been identified
and investigated.

Based on the results obtained thus far, work will
continue to a Phase 3 effort, which will concentrate
on completing design formalizations and develop the
techniques needed to produce verified implementa-
tions of RCP architectures.

Acknowledgements
The authors would like to acknowledge the many
helpful suggestions given by Dr. John Rushby of
SRI International. His suggestions during the early
phases of model formulation and decomposition lead
to a significantly more manageable proof activity.
We are also grateful to John and Sam Owre for the
timely assistance given in the use of the EHDM sys-
tem. We are likewise grateful to Paul Miner of NASA
Langley for his careful review of our work. This re-
search was supported (in part) by the National Aero-
nautics and Space Administration under Contract
NO. NAS1-19341.

References
[Bevier 19911 William R. Bevier and William D.

Young. The proof of correctness of a fault-tolerant
circuit design. In Second IFIP Conference on
Dependable Computing For Critical Applications,
pages 107-114, Tucson, Arizona, February 1991.

[Butler 19911 Ricky W. Butler, James L. Caldwell,
and Ben L. Di Vito. Design strategy for a formally
verified reliable computing platform. In 6th An-
nual Conference on Computer Assurance (COM-
PASS 91), Gaithersburg, MD, June 1991.

[Butler 19921 Ricky W. Butler and Ben L. Di Vito.
Formal design and verification of a reliable com-
puting platform for real-time control (phase 2 re-
sults). NASA Technical Memorandum 104196,
January 1992.

[Di Vito 19901 Ben L. Di Vito, Ricky W. Butler, and
James L. Caldwell, 11. Formal design and verifica-
tion of a reliable computing platform for real-time
control (phase 1 results). NASA Technical Mem-
orandum 102716, October 1990.

[Di Vito 19921 Ben L. Di Vito, Ricky W. Butler,
and James L. Caldwell. High level design proof
of a reliable computing platform. In Depend-
able Computing for Critical Applications 2, De-
pendable Computing and Fault-Tolerant Systems,
pages 279-306. Springer Verlag, Wien New York,
1992. Also presented at 2nd IFIP Working Con-
ference on Dependable Computing for Critical Ap-
plications, Tucson, AZ, Feb. 18-20, 1991, pp. 124-
136.

[Goldberg 19841 Jack Goldberg et al. Development
and analysis of the software implemented fault-
tolerance (SIFT) computer. NASA Contractor Re-
port 172146, 1984.

[Hopkins 19781 Albert L. Hopkins, Jr., T. Basil
Smith, 111, and Jaynarayan H. Lala. FTMP -
A highly reliable fault-tolerant multiprocessor for
aircraft. Proceedings of the IEEE, 66(10):1221-
1239, October 1978.

[Kopetz 19891 H. Kopete, A. Damm, C. Koza,
M. Mulazzani, W. Schwabl, C. Senft, and R. Zain-
linger. Distributed fault-tolerant real-time sys-
tems: The Mars approach. IEEE Micro, 9:25-40,
February 1989.

[Lala 19861 Jaynarayan H. Lala, L. S. Alger, R. J.
Gauthier, and M. J. Dzwonczyk. A Fault-Tolerant
Processor to meet rigorous failure requirements.
Technical Report CSDL-P-2705, Charles Stark
Draper Lab., Inc., July 1986.

[Lamport 19821 Leslie Lamport, Robert Shostak,
and Marshall Pease. The Byzantine Generals
problem. ACM Transactions on Programming
Languages and Systems, 4(3):382-401, July 1982.

[Lamport 19851 Leslie Lamport and P. M. Melliar-
Smith. Synchronizing clocks in the presence of
faults. Journal of the ACM, 32(1):52-78, January
1985.

[Mancini 19881 L. V. Mancini and G. Pappalardo.
Towards a theory of replicated processing. In
Lecture Notes in Computer Science, volume 331,
pages 175-192. Springer Verlag, 1988.

[Moser 19871 Louise Moser, Michael Melliar-Smith,
Design verification of and Richard Schwartz.

96

SIFT. NASA Contractor Report 4097, September
1987.

[Walter 19851 C. J. Walter, R. M. Kieckhafer, and
A. M. Finn. MAFT: A multicomputer architecture
for fault-tolerance in real-time control systems. In
IEEE Real-Time Systems Symposium, December
1985.

[NASA 19831 NASA. Peer review of a formal verifi-
cationldesign proof methodology. NASA Confer-
ence Publication 2377, July 1983.

[Rushby 19891 John Rushby and Friedrich von
Henke. Formal verification of a fault-tolerant clock
synchronization algorithm. NASA Contractor Re-
port 4239, June 1989.

[Rushby 19911 John Rushby. Formal specification
and verification of a fault-masking and transient-
recovery model for digital flight-control systems.
NASA Contractor Report 4384, July 1991.

[Rushby 19921 John Rushby. Formal specification
and verification of a fault-masking and transient-
recovery model for digital flight-control systems.
In Second International Symposium on Formal
Techniques in Real Time and Fault Tolerant Sys-
tems, volume 571 of Lecture Notes in Com-
puter Science, pages 237-258. Springer Verlag, Ni-
jmegen, The Netherlands, January 1992.

[Schubert 19911 Thomas Schubert and Karl Levitt.
Verification of memory management units. In Sec-
ond IFIP Conference on Dependable Computing
For Critical Applications, pages 115-123, Tucson,
Arizona, February 1991.

[Shankar 19911 Natarajan Shankar. Mechanical ver-
ification of a schematic Byzantine clock synchro-
nization algorithm. NASA Contractor Report
4386, July 1991.

[Shankar 19921 Natarajan Shankar. Mechanical ver-
ification of a generalized protocol for byzantine
fault-tolerant clock synchronization. In Second In-
ternational Symposium on Formal Techniques in
Real Tame and Fault Tolerant Systems, volume 571
of Lecture Notes in Computer Science, pages 217-
236. Springer Verlag, Nijmegen, The Netherlands,
January 1992.

[Srivas 19911 Mandayam Srivas and Mark Bickford.
Verification of the FtCayuga fault-tolerant micro-
processor system (Volume 1: A case study in theo-
rem prover-based verification). NASA Contractor
Report 4381, July 1991.

[von Henke 19881 F. W. von Henke, J . S. Crow,
R. Lee, J. M. Rushby, and R. A. Whitehurst.
EHDM verification environment: An overview. In
11th National Computer Security Conference, Bal-
timore, Maryland, 1988.

97

